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ABSTRACT: The most efficient way to provide domestic lighting nowadays is by
light-emitting diodes (LEDs) technology combined with phosphors shifting the
blue and UV emission toward a desirable sunlight spectrum. A route in the quest
for warm-white light goes toward the discovery and tuning of the lanthanide-based
phosphors, a difficult task, in experimental and technical respects. A proper
theoretical approach, which is also complicated at the conceptual level and in
computing efforts, is however a profitable complement, offering valuable
structure−property rationale as a guideline in the search of the best materials.
The Eu2+-based systems are the prototypes for ideal phosphors, exhibiting a wide
range of visible light emission. Using the ligand field concepts in conjunction with
density functional theory (DFT), conducted in nonroutine manner, we develop a
nonempirical procedure to investigate the 4f7−4f65d1 luminescence of Eu2+ in the
environment of arbitrary ligands, applied here on the CsMgBr3:Eu

2+-doped
material. Providing a salient methodology for the extraction of the relevant ligand field and related parameters from DFT
calculations and encompassing the bottleneck of handling large matrices in a model Hamiltonian based on the whole set of
33 462 states, we obtained an excellent match with the experimental spectrum, from first-principles, without any fit or
adjustment. This proves that the ligand field density functional theory methodology can be used in the assessment of new
materials and rational property design.

■ INTRODUCTION

The declaration, by the United Nations, of 2015 as the
International Year of Light and Light-based Technologies1 as
well as the recent award of the Nobel Prize for the invention of
efficient blue light-emitting diodes (LED), which has enabled
bright and energy-saving white light sources,2 put in sharp
evidence the new impetus expected in such key domains, the
energy saving turn of domestic lightening being one of the most
immediate application goals. In the quest of finding phosphors
able to alleviate the LED emission,3 bringing it as close as
possible to sun daylight or the so-called warm-white light4−7

the systems based on lanthanide Eu2+-doped active centers are
among the best candidates.4−7 Besides, the luminescence of
Eu2+ compounds is interesting in academic respects, being a
process essentially located at the atomic scale, due to the
interconfiguration 4f7−4f65d1 transitions, which yield high
quantum efficiency even at room temperature.8−10 To
complement the experimental efforts in the measurement the
4f7−4f65d1 excitation and the 4f65d1−4f7 emission spectra in
various host materials, on the road of tuning proper
compositions (host lattices and guest phosphors as doping),

the theoretical branches can be called as the source of rationale
for the red lines of property design.
The theoretical accounts of the electronic structure and the

properties of Eu2+ considering its ground 4f7 and its first excited
4f65d1 configurations are relatively rare. This is because the
electronic structure of two-open-shell 4f7 and 4f65d1 yields large
matric interaction, namely, with 33 462 times 33 462 elements,
generally prohibitive regarding computational cost. Therefore,
the theoretical works are often tributary to standard ligand field
theories fed by empirical parameters.11−13 Most of the studies,
phenomenological or first principles, have used the advent of
high symmetry focusing primarily to the octahedral cases.11−14

Nevertheless, the nature is more complicated than the preferred
idealizations, the actual ongoing research4−7,15−21 indicating the
prevalence of systems where Eu2+ is in a lower coordination
symmetry.
Herein we present a fully theoretical work based on density

functional theory (DFT) enabling the investigation of the local
structure of lanthanide-doped compounds, the calculation of
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the electronic structure with respect to ligand field method-
ologies, and the prediction of the optical effects of the 4f7−
4f65d1 transitions of Eu2+ embedded in the CsMgBr3. This host
compound crystallizes in the hexagonal CsNiCl3 structure type
with the space group P63/mmc (no. 194),

22 giving rise to an
intermediate symmetry case rather than the earlier octahedral
situation. The lattice geometry of the CsMgBr3 host is
determined by means of DFT-based band structure calcu-
lations. However, the doping of Eu2+ into CsMgBr3 and
particularly the local distortion due to the presence of the Eu2+

impurity are explored by DFT geometry optimization operating
with a selective cluster cut from the optimized CsMgBr3 bulk.
On the basis of charge balance, a primary supposition is that the
Eu2+ impurity goes into the site formally occupied by the Mg2+

ion. Thus, the Eu2+ ion is coordinated by six bromide ligands
forming a D3d arrangement. The electronic structure of
(EuBr6)

4− embedded in the CsMgBr3 host is discussed with
respect to ligand field analysis, showing the non-negligible
influence of two Mg2+ ions capping the (EuBr6)

4− octahedron.
The ligand field potential in the Wybourne parametrization is
calculated together with the Slater−Condon integrals and the
spin−orbit coupling constants. They are used to calculate the
multiplet energy levels and the oscillator strength of the electric
dipole moment of the interconfiguration 4f7−4f65d1 transitions.
A priori, a special treatment of possible vibronic interaction in
the 4f7 configuration has permitted the observation of some line
intensities belonging to the intraconfiguration 4f7−4f7
transitions, rendering therefore a realistic convoluted spectrum.

■ METHODOLOGY
The determination of the electronic structure of lanthanide-doped
materials and the prediction of the optical properties are not trivial
tasks. The standard ligand field models lack predictive power and
undergoes parametric uncertainty at low symmetry, while customary
computation methods, such as DFT, cannot be used in a routine
manner for ligand field on lanthanide accounts. The ligand field
density functional theory (LFDFT) algorithm23−30 consists of a
customized conduct of nonempirical DFT calculations, extracting
reliable parameters that can be used in further numeric experiments,
relevant for the prediction in luminescent materials science.31 These
series of parameters, which have to be determined in order to analyze
the problem of two-open-shell 4f and 5d electrons in lanthanide
materials, are as follows.

(1) The gap parameter Δ(fd), which represents the energy shift of
the multiplets of the 4fn−15d1 configuration with respect to
those of the 4fn. It is obtained as the difference in the
barycenter of the DFT energies associated with the 30 030
Slater-determinants arising from the 4f65d1 manifold and those
3432 from the 4f7.23,32

(2) The Slater−Condon integrals Fk(ff), Fk(fd), and Gk(fd), which
represent the static electron correlation within the 4fn and
4fn−15d1 configurations. They are obtained from the radial wave
functions Rnl of the 4f and 5d Kohn−Sham orbitals of the
lanthanide ions.23,31

(3) The spin−orbit coupling constants ζ4f and ζ5d, which represent
the relativistic spin−orbit interaction in the 4f and 5d shells,
also determined by means of the radial wave functions Rnl of
the 4f and 5d Kohn−Sham orbitals of the lanthanide ions.23

(4) The Wybourne crystal field parameters Bq
k(f, f), Bq

k(d, d), and
Bq
k(f, d), which describe the interaction due to the presence of

the ligands onto the electrons of the lanthanide center. They
are deduced from the ligand field energies and wave functions
obtained from Kohn−Sham orbitals of restricted DFT
calculations within the average of configuration (AOC)
reference by placing evenly n − 1 electrons in the 4f orbitals
and one electron in the 5d.33

The lattice geometry of CsMgBr3 is approached via periodical
calculations by means of the VASP program package.34,35 The local
density approximation (LDA) based on VWN36 and the generalized
gradient approximation (GGA) formulized in PBE37 are used for the
exchange and correlation functional. The interaction between valence
and core electrons is emulated with the projected augmented wave
method.38,39 External as well as semicore states are included in the
valence. A plane-wave basis set with a cutoff energy of 520 eV is used.
Four k points were included in the direction a and b of the lattice,
while 6 k points were comprised in the direction c.

The atomic positions were allowed to relax until all forces were
smaller than 0.005 eV/Å. The local structure of the Eu2+ impurity in
CsMgBr3 is tackled via geometry optimization based on the cluster
approach.40 The optimized lattice structure of CsMgBr3 is used. An
appropriate cluster is obtained as a selective cut along the 3-fold c axis
of the unit cell of CsMgBr3 (Figure 1a). A moiety containing five units

of face-sharing (MgBr6)
4− octahedra (Figure 1b) represents a perfect

balance between the total number of atoms in the cluster (i.e., 35) and
the charge of the edifice (i.e., + 4). This cluster is relaxed, keeping the
electronic structure to have the 4f7 and 4f65d1 electron configurations
of Eu2+, respectively. The positions of the atoms are relaxed, except
those corresponding to Br(3), Mg(2), and their mirror images, as well
as all Cs centers (Figure 1b), kept frozen to the optimized CsMgBr3
bulk, to mimic the presence of the lattice. The DFT calculations have
been carried out by means of the Amsterdam Density Functional
(ADF) program package (ADF2013.01),41−43 which is one of the few
DFT codes having the set of keywords facilitating the AOC
calculations and Slater-determinant emulation needed by the
LFDFT algorithm.23−33 The LDA VWN functional36 as well as the
GGA PBE functional37 are used for the geometry optimization. The
molecular orbitals are expanded using triple-ζ plus two polarization
Slater-type orbital (STO) functions (TZ2P+) for the Eu atom and
triple-ζ plus one polarization STO function (TZP) for the Cs, Mg, and
Br atoms. The LFDFT modeling of the electronic structure and the
related optical properties of CsMgBr3:Eu

2+ is done using the hybrid
B3LYP functional, in line with previous works.23,30−33

■ RESULTS AND DISCUSSION
Local Structure of the Eu2+ Impurity. From the

experimental perspective, the doping of lanthanide ions into
solid state materials can be probed by different instrumental
technics such as nuclear magnetic resonance (NMR),44

extended X-ray absorption fine structure (EXAFS),45,46 or
electron paramagnetic resonance (EPR),47 which instead of
giving a direct clue of the local geometry offers only data that
can be corroborated to it. From the theoretical point of view,

Figure 1. Representation of the crystal structure of CsMgBr3 (a) and a
selective cut along the z axis showing five units of face-sharing
(MgBr6)

4− where the Eu2+ dopant is placed into the position of the
central Mg2+ ion (b).

Inorganic Chemistry Article

DOI: 10.1021/acs.inorgchem.5b00988
Inorg. Chem. 2015, 54, 8319−8326

8320

http://dx.doi.org/10.1021/acs.inorgchem.5b00988


the classical way is the simulation by periodical crystal supercell
structure23,31,32 with band structure methodologies which are,
however, not useful in the further advancement toward ligand
field modeling.40 Alternatively, one may consider a sufficiently
large cluster, carrying out geometry optimization by appropriate
management of the variable versus frozen geometry coor-
dinates. Using the same computational tools employed in the
LFDFT account, this scheme has then inner consistency. In
previous work32 we probed that the cluster optimization leads
to results similar to the bulk supercell approach. By means of
band structure calculation, the optimized lattice parameters of
the pristine CsMgBr3 system are given in Table 1 compared

with the experimentally available X-ray diffraction data.48 We
investigate the local structure around the Eu2+ impurity, which
is incorporated in the matrix of CsMgBr3 (Figure 1). We use
the optimized structure of CsMgBr3 obtained at the LDA and
GGA levels of theory (Table 1). Cesium magnesium bromide
(CsMgBr3) crystallizes in the hexagonal P63/mmc space group
(no. 194).22,48 The divalent Eu2+ ions enter into the sites
formally occupied by Mg2+. They are coordinated by six
bromide ligands within the D3d point group.
The geometry of the cluster represented in Figure 1b is then

optimized. Theoretical results performed at two different levels
of theory are collected in Table 2, compared with the reference
structure of CsMgBr3 deduced from the experimental data.48

The cluster geometry optimization approach is used instead of
the band structure algorithm in the investigation of the local
structure of the Eu2+ impurity because this procedure yields
appropriate structure with defined electron configuration.40

The 4f orbitals of Eu2+ split into a1u, a2u, a2u, eu, and eu
irreducible representations (irreps) of the D3d point group
(see Figure 2). On the other hand, the 5d orbitals of Eu2+ form
the basis of a1g, eg, and eg irreps (see Figure 3). The ground
configuration geometry GC (Table 2) is reached distributing
evenly seven electrons in the 4f orbitals of Eu2+. Then the
excited configuration geometry EC (Table 2) is attained by the
self-consistency of an even distribution of six electrons in the 7-
fold 4f orbitals, altogether with one electron placed in the a1g
component of the 5d orbitals. The LDA geometry optimization
renders a closer match to the pristine CsMgBr3 reference than
the GGA treatment (Table 2), i.e., it induces less perturbation
in the pure lattice probably because the simpler approximation
catches better the global bonding trends of the lattice.
Calculation of the Slater−Condon, spin−orbit cou-

pling and ligand field parameters. The luminescence of
CsMgBr3:Eu

2+ is crucially dependent on the local coordination
geometry of the Eu2+ dopant. Besides, a geometry change
occurs in the excited state 4f65d1 (see Table 2), leading to shifts

of lines in the emission spectrum as compared to the
absorption (Stokes shift).49 Apparently intriguing, the
excitation leads to a shortening of the Eu−Br(1) bond length
(Table 2) because, contrary to the usual situation where orbital
promotion increases the antibonding, the fact is that the
occupation of the 5d orbitals strengthens the binding. This is
because the 4f shell, having a radius smaller than the lanthanide
ion itself, does not contribute to the chemical bonding, which is
mostly ionic and partly due to donation effects into the 5d
virtuals.40,50−52 A surge of 5d electron population, by excitation,
enhances the radial extension and bonding propensity of these
functions, leading to shrinkage of the coordination radii.40

According to the LFDFT methodology,23,30 series of DFT
calculations and subsequent analyses provide the ligand field
one-electron parameters, the spin−orbit coupling constants
(mainly one-electron character), and the related Slater−
Condon integrals (two-electron, Coulomb, and exchange
effects), further used in the full modeling of the complex

Table 1. Optimized Lattice Parameters a, b, c (in
Angstroms) and α, β, γ (in degrees) of CsMgBr3 Obtained at
the LDA and GGA DFT Levels of Theory, Together with the
Experimental X-ray Diffraction Data (exp.)

LDA GGA exp.a

a 7.3342 7.8198 7.610
b 7.3342 7.8198 7.610
c 6.3240 6.6228 6.502
α 90.0 90.0 90.0
β 90.0 90.0 90.0
γ 120.0 120.0 120.0

aTaken from ref 48.

Table 2. Optimized Local Structure Around the Eu2+

Impurity Embedded in CsMgBr3 for the Ground 4f7 (GC)
and Excited 4f65d1 (EC) Electron Configurations of Eu2+

Obtained at the LDA and GGA DFT Levels of Theorya

GC EC

LDA GGA LDA GGA exp.b

Eu−Br(1) 2.8169 2.8607 2.7687 2.8189 2.6648
Eu−Mg(1) 3.3924 3.4161 3.3118 3.3287 3.2510
Eu−Br(2) 5.2453 5.3287 5.1867 5.2914 5.3140
Eu−Mg(2)c 6.3240 6.6230 6.3240 6.6230 6.5020
Eu−Br(3)c 8.1798 8.5480 8.1798 8.5480 8.3973
Mg(1)−Eu−
Br(1)

51.46 52.15 53.99 54.56 52.41

Mg(1)−Eu−
Br(2)

24.84 25.08 25.58 25.72 23.41

Mg(1)−Eu−
Br(3)c

14.89 14.43 14.89 14.43 14.56

aDistances between the Eu2+ dopant (in Angstroms) and next nearest
neighbors and bond angles Mg−Eu−Br (in degrees) (Figure 1b).
bThe experimental data represent the crystal structure of CsMgBr3
taken from ref 48. cIn the cluster geometry optimization approach, the
coordinates of Mg(2) and Br(3) species are kept frozen to the band
structure data.

Figure 2. Representation of the energies of the 4f Kohn−Sham
orbitals of Eu2+ in CsMgBr3 obtained from the output of AOC-type
calculation. The two diagrams represent the cases of geometries
(Table 2) at ground and excited configurations (GC versus EC).
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spectra.53−55 In order to meet the premises of ligand field
theory, the DFT calculations must be performed under the so-
called average of configurations (AOC) calculation proce-
dure.23−33 It is a nonstandard handling that consists in
imposing equal populations on the Kohn−Sham orbitals
associated with the ligand field sequence, leading to a totally
symmetric density. Then the orbital energies and eigenvectors
are used to retrieve the ligand field matrix in atomic-like
basis.23−33 The spin−orbit coupling, bringing the relativistic
effects together with the Slater−Condon integrals, is derived
from the radial functions of the 4f and 5d Kohn−Sham orbitals
of Eu2+ averaged in the bromide environment for both
optimized structures in Table 2.23,31 The calculated parameters
are given in Table 3. The calculated ligand field parameters33 of
the 4f and 5d orbitals of Eu2+ are also shown in Table 3 as a
function of the GC or the EC geometry (Table 2). The ligand
field energies of the 4f and 5d orbitals of Eu2+ are graphically
represented in Figures 2 and 3, respectively, as a function of the
GC and EC geometries (Table 2).
The ligand field schemes are including the definite influence

of the two Mg2+ ions capping the faces of the (EuBr6)
4−

octahedron (Figure 1b). Their positive charges are exerting a
stabilization trend against the electrons on the lanthanide,
particularly for the orbitals pointing the lobes along the chain
axis, i.e., fz3 (Figure 2) and dz2 (Figure 3) forming the basis of
a2u and a1g representation in D3d, respectively. Indeed, in the
D3d symmetry of the (EuBr6)

4− frame, the perturbation from
the two apical Mg2+ neighbors (Figure 1b) spans the
representation of a1g and a2u symmetry.
The former leads to the stabilization of same symmetry

component in the 5d diagram (Figure 3), while the latter
interacts with the a2u from the 4f scheme (Figure 2). The ligand
field energy parameters are larger in the excited states (Table 3)
because of the previously mentioned enhanced bonding
capabilities. The slight radial expansion of the occupied 5d
orbitals, in comparison to their status as virtuals, enhances their
interaction with the chemical environment.
Angular Overlap Model (AOM) Analysis of the Ligand

Field Potential. For a gain of chemical intuition, we rewrite
the ligand field potential in terms of the angular overlap
model.33 The site symmetry of the Eu2+ center is D3d, and the
ligand field splitting is mainly induced by the six equivalent
Br(1) ligands as well as the two Mg(1) (Figure 1b). Therefore,

we can define the following set of parameters: eσ(f)Br−, eπ(f)Br−,
and eσ(f)Mg

2+ acting on the 4f orbitals and eσ(d)Br−, eπ(d)Br−, and
eσ(d)Mg

2+ acting on the 5d ones. The definition of the AOM
parameters expresses the perturbation power of the environ-
ment sites on the σ and π interaction channels. The eigenvalues
of the ligand field matrix, suggested in Figures 2 and 3,
respectively for 4f and 5d orbitals, are used to obtain AOM
parameters by least mean square fit. We calculated, for instance,
in the case of the GC (Table 1) geometry the following
parameters (in cm−1), eσ(f)Br− = 109, eπ(f)Br− = 92, eσ(f)Mg

2+ =
−26, eσ(d)Br− = 8639, eπ(d)Br− = 2900, and eσ(d)Mg

2+ = −1492,
the mean deviations with the DFT results (Figures 2 and 3)
being 7.39 and 0, respectively. The usual situation ranking of
AOM parameters is eσ > |eπ| (occasionally with negative |eπ| for
the case of back-donation effects) and |eλ(d)| ≫ |eλ( f)| with λ =
σ,π. Working with the nonstandard situation of accounting the
perturbation from next neighbor cations, negative AOM
parameters are obtained for the magnesium ions. This is
perfectly reasonable considering that the positively charged
sites must exert effects contrary to those emerging from the
electron clouds of the ligands. One obtains a perfect mapping
between the DFT results and the AOM formalism for the 5d
ligand field. However, in the 4f block, the small deviation can be
assigned as due to higher order perturbations.33 The splitting of
the 4f orbitals obtained from the DFT calculation is much
smaller if compared to the 5d orbital spacing. Then the DFT
calculation takes into consideration many quantum effects that
might not be fully classified by the simple σ and π interactions
of the AOM formalism. Also, the AOM gives an intuitive

Figure 3. Representation of the energies of the 5d Kohn−Sham
orbitals of Eu2+ in CsMgBr3 obtained from the output of AOC-type
calculation. The two diagrams represent the cases of geometries
(Table 2) at ground and excited configurations (GC versus EC).

Table 3. Calculated Slater−Condon Integrals, Spin−Orbit
Coupling Constants, and Ligand Field Parameters (in cm−1)
for CsMgBr3:Eu

2+ Considering the Ground (GC) and
Excited (EC) Configurations Local Structures of the Eu2+

Impurity

GC EC

F2( f f) 388.47 388.47
F4( f f) 49.92 49.92
F6( f f) 5.30 5.30
G1( fd) 124.52 116.17
G3( fd) 11.00 8.64
G5( fd) 1.72 1.28
F2( fd) 87.01 76.12
F4( fd) 6.48 4.85
Δ( fd) 10 897.34 10 382.29
ζ4f 1246.50 1246.50
ζ5d 302.06 259.87
B0
2( f, f) −320.56 −723.85

B0
4( f, f) −475.07 −1194.36

B3
4( f, f) -i8.38 -i730.31

B−3
4 ( f, f) i8.38 i730.31

B0
6( f, f) −595.82 13.47

B3
6( f, f) -i291.33 -i152.72

B−3
6 ( f, f) i291.33 i152.72

B6
6( f, f) 88.92 127.23

B−6
6 ( f, f) 88.92 127.23

B0
2(d, d) 125.18 −3419.09

B1
2(d, d) −22 267.87 −20 525.90

B−1
2 (d, d) −22 267.87 −20 525.90

B0
4(d, d) −24 470.57 −28 082.92

B1
4(d, d) 9090.82 8379.66

B−1
4 (d, d) 9090.82 8379.66
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description of the ligand field potential being here able to
indicate the contribution of the two Mg2+ with negative eσ
values.
Multiplet Structure and Absorption Spectra. The

calculated multiplet energy levels arising from the 4f7 and
4f65d1 configurations of Eu2+ in CsMgBr3 are presented in
Figure 4 for the GC and EC geometries in Table 2. The 4f7

obtains 3432 energy levels constituting 1716 Kramers doublets,
while the 4f65d1 leads to 30 030 states (15 015 Kramers-
doublets). The 4f7 ground state, 8S7/2, with a very small zero-
field splitting is taken as the zero of the energy. The spectral
energy levels of 4f7 (Figure 4, in red) are not significantly
affected by the GC versus EC geometry change, contradictory
to those of 4f65d1 where a noticeable modification occurs
(Figure 4). The computed Stokes shift is 1748 cm−1, in the
magnitude of the experimentally deduced value of 1920 cm−1.22

Considering the lowest margin of the 4f65d1 manifold, a
4f65d1−4f7 emission at 19 885 cm−1 in the green spectral region
(Figure 4) is predicted, also in agreement with the
experimentally observed emission, i.e., 19 578 cm−122

The matrix element of the electric dipole moment operator
dα⃗ is constructed in terms of the one-electron wave function ψ

ψ ψ π⟨ | ⃗ | ⟩ = ⟨ | | ⟩⟨ | | ⟩μ α αμ μ ν ν μ μ ν ν
d R r R Y Y Y

4
3v n l n l n l n l1, (1)

where in the right-hand side of eq 1 the term carrying the radial
component is simple overlap integrals while the angular term is
proportional with the Clebsh−Gordan coefficients.53,56

Considering μ, ν = 4f and 5d, eq 1 is a matrix with 12 by 12
elements, important for computation of the intensities of the
transitions by distributing its elements over the whole manifold
of the multielectron wave function. Considering the actual
centrosymmetric D3d coordination of Eu2+, only the 7 by 5
elements corresponding to the off-diagonal ⟨ψ4f|d ⃗α|ψ5d⟩ block

are nonzero. Thus, in D3d symmetry, the 4f7 → 4f7 transitions
do not carry intensity. However, vibronic coupling can easily
encompass the Laporte restriction because the complete wave
function ψ must include electronic and vibrational parts

ψ ψ ψ=μ μ μ
orbital vib

(2)

To demonstrate this mechanism, we break the D3d symmetry
of the complex. We have shown over the past two decades that
multideterminantal DFT57−59 is adequate to describe the
vibronic interaction. Therefore, we reoptimize the geometry
(LDA structure) corresponding to GC (Table 2) without any
symmetry constraint (C1), while previously we imposed the C3
axis of the mother lattice. A tiny distortion from the D3d
symmetry occurred with about 0.0072 Å average bond length
change and a shallow energy stabilization of 241 cm−1. This
affects by less than 5% the ligand field parameters, providing
however a set of dipole moment integrals which (eq 1), taken
in a relative sense, accounts for a weak intensity of the 4f7 → 4f7

transitions. This relaxation of the Born−Oppenheimer
approximation is a convenient surrogate to describe the
dynamic vibronic interaction

ψ ψ ψ ψ⟨ | ⃗ | ⟩ ≠αd 04f
orbital

4f
vib

4f
orbital

4f
vib

(3)

that confers the intensity of the 4f7 → 4f7 transitions.
The 4f7 → 4f65d1 transitions are electric dipole allowed, the

intensity matrix elements being roughly the same in the D3d and
C1 geometries.
Using the ligand field parameters, the two-electron integrals

and spin−orbit coupling constants in Table 3 and the dipole
matrix elements for the intensity part in eq 1, the prediction of
the absorption spectrum is approached in Figure 5. One notes
an exceptional match of the spectral profile of CsMgBr3:Eu

2+ 22

with the first-principles simulation of energies and intensities.
The dominant intensity comes from the dipole-allowed 4f7 →
4f65d1 transitions. Though small, the 4f7→ 4f7 part nicely
accounts for the weak details visible as a distinct weak double
peak placed at about 32 000 cm−1 in the canyon between the
large bands and the soft slope at about 37 000 cm−1, at the left
margin of the second large band envelope (Figure 5).
The computed intensities of the predominant 4f7 → 4f65d1

transitions, represented by the height of the lines, are well
matching the resolution details of the complex experimental
spectrum.22 Note that unless there is a global scaling, because
of the arbitrary units in experimental data, no fit is implied in
the representation of computed results.
The strong line intensity laying at 43 000 cm−1, while

predicted, is not yet measured due to technical limits.22 The
virtue of LFDFT in retrieving realistic and detailed spectral data
by first-principle route recommends the algorithm as a valuable
complement in assessing various phosphor materials, along with
experimental tests or by a priory property design, saving the
tedious trial-and-error experimental combinatorial work.

Prediction of the Emission Spectrum. The prediction of
the emission spectrum corresponding to the 4f65d1 → 4f7 (8S)
transitions is rather delicate since the emission is the result of
the relaxation from many states incorporating a humungous
number of paths with nonradiative decay. By modest
assumption, we can approximate the emission as the radiation
from the lowest multiplet energy levels of the 4f65d1 electron
configuration (Figure 4) to the ground state of the 4f7, i.e., the
8S7/2 that is further split by very small zero-field splitting. Then
the electronic transition, which is electric dipole allowed, gives

Figure 4. Calculated multiplet energy levels (zero-phonon lines)
arising from the ground 4f7 (in red) and excited 4f65d1 (in blue)
configurations of Eu2+ in CsMgBr3:Eu

2+ obtained for the two
geometries (LDA structures) representing the ground (GC) and
excited (EC) configurations of Eu2+ (Table 2). The energy range from
0 to 50 000 cm−1 is selectively magnified showing the change in the
4f65d1 energy levels of GC and EC. Some atomic spectral terms of the
Eu2+ in the 4f7 configuration are given for clarity. All states, from spin
octets to doublets, are included. (Inset) Full range spectrum.
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rise to one zero-phonon line emission, which is further coupled
to vibrations. We use the so-called Huang−Rhys factor gk59−64
to measure the strength of the linear electron−phonon
coupling. Since the transition path, which is used for the
transformation of the EC geometry to the GC one (Table 2),
conserves the D3d symmetry, the Huang−Rhys factor are
mainly associated with the totally symmetric vibrational mode
a1g. It is straightforward to consider the neutral cluster
(EuBr6Mg2), whose coordinates are taken from Table 2, for
the two stationary points GC and EC representing the structure
of the Eu2+ impurity at the ground and excited configurations of
Eu2+ in CsMgBr3, respectively. The analytical harmonic
frequencies and normal modes at the two stationary points
are determined. They are presented in Table 4, where there are
21 normal modes belonging to the neutral cluster which form
the basis of the following irreps: 3 a1g, 3 eg, a1u, 3 a2u, and 4 eu
(Table 4). The correlation between the normal modes of the
GC and EC are constructed by means of the orthonormal
Dushinsky matrix.59,65 The displacement vector is the differ-
ence between EC and GC stationary points, and k expresses the
contribution along the mass-weighted GC normal coordinates
to the displacement vector. Ek represents the energy
contribution of the normal modes on the relaxation of the
EC stationary point to the GC one within the 4f7 electron
configuration of Eu2+.59 They are also represented in Table 4.
The Huang−Rhys factor gk is related to k following ref 63.
The calculated values of the Huang−Rhys factor are also

collected in Table 4, where it is seen that the contribution of

the totally symmetric a1g vibrational modes are the biggest, i.e.,
they are mainly responsible for the electron−phonon coupling.
A graphical representation of their motion is given in Figure 6.

To simulate the vibrational progression, we obtain the
Franck−Condon factors using the two-dimensional array
method in ref 64. We consider 1 vibrational quantum (ν =
0) from the EC stationary point and 21 vibrational quanta (ν′ =
0, 1, ..., 20) from the GC stationary point. The Franck−
Condon factors are then calculated for every permutation up to
21 quanta over the vibrational modes. It is necessary in order to
get all Franck−Condon factors of the EC stationary point with
respect to each three a1g vibrational state (Figure 6) of the GC
to sum to one. One obtains a qualitative agreement between
the calculated and the experimental emission profiles (Figure
7).

■ CONCLUSION
In this work, we outline the methodology for realistic analysis
and first-principles prediction of the optical properties useful
for obtaining phosphors, ameliorating the emission of LED
devices by shifting the blue and UV predominance realizing

Figure 5. (Right) Calculated electric dipole oscillator strength (i.e.,
zero phonon lines) obtained for the transitions 4f7 (8S) → 4f65d1 (in
violet) and 4f7 (8S) → 4f7 (in magenta) of Eu2+ in CsMgBr3:Eu

2+

together with the experimental excitation spectra (in black) taken from
ref 22. The multiplet energy levels corresponding to the 4f7 (in red)
and 4f65d1 (in blue) are presented on the bottom line. The green
curve represents a superimposition of a Gaussian band with a width of
125 and 350 cm−1 on the zero phonon lines corresponding to the 4f7

(8S) → 4f7 and 4f7 (8S) → 4f65d1 transitions, respectively. (Left-upper
corner) Mechanisms of phosphor action, converting high-energy
absorbed quanta to lower energy emission via arrays of nonradiative
decay along the many states of the 4f65d1 manifold comprised in the
first band. (Left-side inset) Magnified sequence containing the 4f7 (8S)
→ 4f7 weak intensity bands.

Table 4. Predicted Vibrational Energies ℏω (in cm−1)
Corresponding to the GC and EC Stationary Points, The
Displacement Vector k (in (amu1/2·Å)), the Energy
Contribution Ek (in cm−1), and the Huang−Rhys Factor gk
(dimensionless)

ℏω

vib. GC EC k Ek gk

eu 38.12 42.55 0.0000 0.00 0.00
a1u 41.78 31.90 0.0000 0.00 0.00
a1g 72.42 82.93 −3.0843 647.39 10.22
eu 78.15 63.23 0.0000 0.00 0.00
eg 83.39 62.44 −0.0017 0.00 0.00
a2u 94.68 91.85 0.0000 0.00 0.00
eg 137.70 147.54 −0.0013 0.00 0.00
a1g 161.03 169.42 −0.4170 73.27 0.42
eu 166.62 171.18 0.0000 0.00 0.00
a2u 185.20 206.97 0.0000 0.00 0.00
eu 214.64 214.82 0.0000 0.00 0.00
eg 215.52 183.06 −0.0007 0.00 0.00
a1g 267.28 262.71 −1.0481 137.61 4.35
a2u 283.27 239.16 0.0000 0.00 0.00

Figure 6. Representation of the three totally symmetric a1g vibrations
of (EuBr6Mg2) that is responsible of the electron phonon coupling in
the 4f65d1−4f7 transitions of Eu2+ in CsMgBr3. Color code: Eu

2+ in
violet, Br− in red, and Mg2+ in yellow.
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warm-white light. The LFDFT method consists of nonroutine
DFT calculations setting numeric experiments defining the
ligand field and related parameters (Slater−Condon integrals
and spin−orbit coupling). Without the designed handling of
spin and orbital population, the DFT in itself does not directly
provide information consistent with the ligand field frame. The
ligand field is a necessary ancillary tool, producing simulations
of spectra, extending therefore the power of DFT, from where
the parameters originate, beyond its nominal reach. The
method was applied to CsMgBr3 doped with Eu2+, where a
LFDFT modeling of (EuBr6)

4− octahedra belonging to an
extended cluster mimicking well the local and long-range
environment has been performed. The considered problem has
a high level of technical difficulty in the ligand field modeling
part, implying a nontrivial case of two-open-shell ligand field
and a large dimension of Hamiltonian matrix, in general
prohibitive, encompassed with special algorithmic steps of
parallel computing. The match of experimental computed
profiles to the experimental spectrum, in both major pattern
and minor details, without adjustment or fit proves that the
developed theoretical method is a reliable complement to
experimental analysis.
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